Hace unos días un artículo preaceptado en la revista Nature nos hablaba de las maravillas del modelo de inteligencia artificial (IA) AlphaFold 3, que superaban en mucho a su versión anterior. Se trata de un sistema capaz de predecir la estructura de proteínas, ácidos nucleicos y moléculas pequeñas cuyo potencial para la medicina de precisión y la creación de medicamentos es enorme. Además, el uso de modelos –tanto predictivos como generativos– de IA para diagnóstico está produciendo resultados asombrosos.
Casi al mismo tiempo, se nos informaba en los medios del proyecto de creación en la Unión Europea de un centro de investigación en IA dedicado especialmente al desarrollo de sistemas útiles para la investigación científica.
Todo esto no ha hecho más que comenzar. Las consecuencias que la extensión del uso de modelos predictivos tendría para la ciencia desde el punto de vista epistemológico y metodológico es un asunto sobre el que hay un creciente interés.
En otro artículo publicado este año en Nature se señalan tres ilusiones a las que puede conducir una aplicación acrítica de la IA en la investigación científica:
La ilusión de profundidad explicativa. Consistiría en hacer creer a los científicos que entienden más sobre un conjunto de fenómenos porque han sido predichos con exactitud por un modelo de IA.
La ilusión de amplitud exploratoria. Consistiría en creer que lo que puede ser modelizado por la IA agota la realidad que ha de ser explorada.
La ilusión de objetividad. Consistiría en creer que las herramientas de la IA eliminan cualquier elemento de subjetividad y representa a todos los puntos de vista relevantes.
Son tres peligros que habrá que esquivar. La pérdida de importancia de la comprensión profunda de los fenómenos en la ciencia es un riesgo. La ciencia ha buscado la explicación y la predicción. Cabe la posibilidad de que el enorme éxito predictivo conseguido a través de sistemas de IA –que se comportan como cajas negras, puesto que son incapaces de justificar sus resultados–, relegue a un segundo plano la capacidad explicativa.
Estos modelos predictivos pueden ser muy útiles en la práctica, puesto que son capaces establecer correlaciones precisas que nos avisen con bastante seguridad de cuándo puede suceder algo –cuándo está aumentando la incidencia de una enfermedad–, pero el precio a pagar podría ser la imposibilidad de desentrañar lo que ocurre para encontrar una explicación causal.
Sin embargo, el empleo cada vez más extendido de sistemas de IA que presentan lo que se ha denominado opacidad epistémica puede conducir a la merma en la comprensión de la realidad que nos procura la capacidad explicativa de hipótesis, modelos y teorías.
Todo esto son buenas razones para no poner todo el peso de la investigación en los modelos predictivos, por beneficiosos que puedan ser. Estos modelos han de ser completados con el uso de modelos explicativos y con la búsqueda de hipótesis explicativas contrastables.
Noticia elaborada a partir del artículo original publicado en The Conversation.